| Name | Teacher | Date | |---------|-----------|------| | 1 MIIIC | 1 Cuciici | Dute | ## 1. Calculate the altitude of the noon sun on the equinoxes and solstices. | Fill in the | empty cells
e formulas: | = 90°
- Latitude | = Equinox
+ 23.5° | = 90°
-Latitude | = Equinox
- 23.5° | = Latitude | |-------------------------|----------------------------|--------------------------|------------------------------------|--------------------------|------------------------------------|--------------------| | Name of | Location's | Vernal
Equinox | Summer
Solstice | Autumnal
Equinox | Winter
Solstice | Altitude of | | Location | Latitude | March 20/21 | June 21/22 | September 22/23 | December 21/22 | Polaris | | Spring
Valley,
NY | 41° N | (NOON SUN
TO SOUTH) | (NOON SUN
TO SOUTH) | (NOON SUN TO
SOUTH) | (NOON SUN TO
SOUTH) | | | North
Pole | 90° N | (SUN CIRCLES
HORIZON) | (SUN CIRCLES
SKY) | (SUN CIRCLES
HORIZON) | (SUN BELOW
HORIZON) | | | Arctic
Circle | 66.5° N | (NOON SUN
TO SOUTH) | (NOON SUN
TO SOUTH) | (NOON SUN
TO SOUTH) | (NOON SUN ON
HORIZON,
SOUTH) | | | Tropic of
Cancer | 23.5° N | (NOON SUN
TO SOUTH) | (NOON SUN
AT ZENITH) | (NOON SUN TO
SOUTH) | (NOON SUN TO
SOUTH) | | | Equator | 0° | (NOON SUN
AT ZENITH) | (NOON SUN
TO *** NORTH) | (NOON SUN
AT ZENITH) | (NOON SUN TO SOUTH) | | | Tropic of Capricorn | 23.5° S | (NOON SUN
TO NORTH) | 43° (NOON SUN TO NORTH) | (NOON SUN TO
NORTH) | 90° (NOON SUN AT ZENITH) | (BELOW
HORIZON) | | Antarctic
Circle | 66.5° S | (NOON SUN
TO NORTH) | (NOON SUN
ON HORIZON,
NORTH) | (NOON SUN TO | 47° (NOON SUN TO NORTH) | (BELOW
HORIZON) | | South
Pole | 90° S | 0° (SUN CIRCLES HORIZON) | -23.5° (SUN BELOW HORIZON) | OO (SUN CIRCLES HORIZON) | 23.5° (SUN CIRCLES SKY) | (BELOW
HORIZON) | ***ALL ANSWERS SHOULD BE 90° OR LESS... | Name | Teacher | Date | |------|---------|------| | | | | **Direction of Sunrise/Sunset on the Equinoxes and Solstices** | Name of | Location's | Vernal
Equinox | Summer
Solstice | Autumnal
Equinox | Winter
Solstice | |------------------------|------------|-----------------------------|-------------------------|-----------------------------|-------------------------| | Location | Latitude | March 20/21 | June 21/22 | September 22/23 | December 21/22 | | Spring
Valley, NY | 41° N | Sunrise:EAST
Sunset:WEST | Sunrise:NE
Sunset:NW | Sunrise:EAST
Sunset:WEST | Sunrise:SE
Sunset:SW | | North Pole | 90° N | (Sun circles horizon) | (Sun circles sky) | (Sun circles horizon) | (Sun below
horizon) | | Arctic
Circle | 66.5° N | Sunrise:EAST
Sunset:WEST | NORTH | Sunrise:EAST
Sunset:WEST | (Sun below
horizon) | | Tropic of
Cancer | 23.5° N | Sunrise:EAST
Sunset:WEST | Sunrise:NE
Sunset:NW | Sunrise:EAST
Sunset:WEST | Sunrise:SE
Sunset:SW | | Equator | 0° | Sunrise:EAST
Sunset:WEST | Sunrise:NE
Sunset:NW | Sunrise:EAST
Sunset:WEST | Sunrise:SE
Sunset:SW | | Tropic of
Capricorn | 23.5° S | Sunrise:EAST
Sunset:WEST | Sunrise:NE
Sunset:NW | Sunrise:EAST
Sunset:WEST | Sunrise:SE
Sunset:SW | | Antarctic
Circle | 66.5° S | Sunrise:EAST
Sunset:WEST | (Sun below horizon) | Sunrise:EAST
Sunset:WEST | SOUTH | | South Pole | 90° S | (Sun circles horizon) | (Sun below
horizon) | (Sun circles horizon) | (Sun circles sky) | 2. Use the two tables above, and this key to draw the paths of the sun on the equinoxes and solstices at each of the eight locations. (Add compass directions to each diagram first, including NE, NW, SE, and SW. Be careful at the poles...) ## KEY: | <u>SYMBOL</u> | <u>MEANING</u> | | |---------------|----------------------|--| | EQ | EQUINOX | | | JS | JUNE SOLSTICE | | | DS | DECEMBER SOLSTICE | | | * | POLARIS (NORTH STAR) | | by Charles Burrows | Name | Teacher | Date | |---|------------|---------------------| | 1. ON EACH DATE, WHERE IS | THE NOON | SUN AT THE ZENITH? | | a) VERNAL EQUINOX | | | | b) SUMMER SOLSTICE | | | | c) AUTUMNAL EQUINOX | | | | d) WINTER SOLSTICE | | | | 2. ON EACH DATE, WHERE IS | THE NOON | SUN ON THE HORIZON? | | a) VERNAL EQUINOX | | | | b) SUMMER SOLSTICE | | | | c) AUTUMNAL EQUINOX | | | | d) WINTER SOLSTICE | | | | 3. ON EACH DATE, WHERE IS HORIZON? | THE NOON | I SUN BELOW THE | | a) VERNAL EQUINOX | | | | b) SUMMER SOLSTICE | | | | c) AUTUMNAL EQUINOX | | | | d) WINTER SOLSTICE | | | | 4. IS THE SUN EVER AT THE Z | ENITH IN 1 | NEW YORK? | | 5. WHAT IS THE MAXIMUM AT EACH LOCATION? | LTITUDE C | OF THE NOON SUN AT | | a) SPRING VALLEY, NY | | | | b) NORTH POLE | | | | c) ARCTIC CIRCLE | | | | d) TROPIC OF CANCER | | | | e) EQUATOR | | | | f) TROPIC OF CAPRICORN | | | | g) ANTARCTIC CIRCLE | | | | h) SOUTH POLE | | | | 6. ON THE SUMMER SOLSTICE HAVE THE LONGEST SHADOV ANSWER. | | |