LAB: GROUNDWATER FLOW	NAME:	DATE:
_		by Charles Burrows

OBJECTIVE: Determine the direction of groundwater flow and a well's risk of being polluted.

MATERIALS: Blank Paper, Centimeter Ruler, Calculator

- On a blank piece of paper, draw three small circles with X's in them (⊗) in a big triangular configuration, as far away from each other as possible, but not at the edge of the paper. This is a map of three wells.
- 2. Draw a second circle around ONE of the wells. That is your personal source of drinking water.
- 3. Randomly label the wells A, B, and C.
- 4. Draw a one-cm-square somewhere **within** the triangle of your three wells. Write "P" for "pollution" in the square. Like this:
- 5. To find the water table elevation at each well, use this formula:

water table elevation = surface elevation of top of well - depth to water in well

WELL LETTER	SURFACE ELEVATION OF TOP OF WELL (ft)	DEPTH TO WATER IN WELL (ft)	WATER TABLE ELEVATION (ft)
A	290	90	
В	150	80	
С	170	20	

- 6. Use a ruler to draw three straight lines connecting the centers of the X's in each well, creating a triangle from your three wells.
- 7. Write the "WATER TABLE ELEVATION" next to each well on your map (from the table above).
- 8. Near the mid-point of each line, label the sides of the triangle X, Y, and Z.
- 9. Each side has two wells for endpoints. Use the "WATER TABLE ELEVATION" values to complete this table:

LINE CONNECTING WELLS	DIFFERENCE BETWEEN THE TWO WATER TABLE ELEVATIONS
X	
Υ	
Z	

10. Complete the following table to determine the length of one 10-foot-elevation-change segment for each line, and how many of these segments there will be: (Round to the nearest 10th.)

LINE CONNECTING WELLS	NUMBER OF SEGMENTS = DIFFERENCE BETWEEN THE TWO WATER TABLE ELEVATIONS <u>DIVIDED BY TEN</u>	LENGTH OF LINE (cm)	THE LENGTH OF ONE 10- FOOT-ELEVATION-CHANGE SEGMENT = LENGTH OF LINE (cm) <u>DIVIDED BY</u> THE NUMBER OF SEGMENTS
X			
Y			
Z			

- 12. Number all of the tick marks by tens, between the values of each well. (Example: Between 150 and 200, the tick marks should be: 160, 170, 180, & 190.)
- 13. Connect numbered tick marks of the same value with dashed lines.
- 14. Starting at the pollution box, draw a big arrow **perpendicular** to the dashed lines, and pointing towards the lowest values.
- 15. **QUESTION**: Does your well (your personal source of drinking/bathing water) seem to be in danger of being polluted? Explain your answer here: